Vector Spaces ปร ภ ม เวกเตอร

Size: px
Start display at page:

Download "Vector Spaces ปร ภ ม เวกเตอร"

Transcription

1 Vector Spaces ปร ภ ม เวกเตอร

2 5.1 Real Vector Spaces ปร ภ ม เวกเตอร ของจ านวนจร ง

3 Vector Space Axioms (1/2) Let V be an arbitrary nonempty set of objects on which two operations are defined, addition and multiplication by scalars (numbers). By addition we mean a rule for associating with each pair of objects u and v in V an object u + v, called the sum of u and v; by scalar multiplication we mean a rule for associating with each scalar k and each object u in V an object ku, called the scalar multiple of u by k. If the following axioms are satisfied by all objects u, v, w in V and all scalars k and l, then we call V a vector space and we call the objects in V vectors.

4 Vector Space Axioms(2/2) 1) If u and v are objects in V, then u + v is in V. 2) u + v = v + u 3) u + (v + w) = (u + v) + w 4) There is an object 0 in V, called a zero vector for V, such that 0 + u = u + 0 = u for all u in V. 5) For each u in V, there is an object u in V, called a negative of u, such that u + ( u) = ( u) + u = 0. 6) If k is any scalar and u is any object in V, then ku is in V. 7) k (u + v) = ku + kv 8) (k + l) u = ku + lu 9) k (lu) = (kl) (u) 10) 1u = u

5 Remark Depending on the application, scalars may be real numbers or complex numbers. Vector spaces in which the scalars are complex numbers are called complex vector spaces, and those in which the scalars must be real are called real vector spaces. We shall discuss complex vector spaces; until then, all of our scalars will be real numbers. The definition of a vector space specifies neither the nature of the vectors nor the operations. Any kind of object can be a vector, and the operations of addition and scalar multiplication may not have any relationship or similarity to the standard vector operations on R n. The only requirement is that the ten vector space axioms be satisfied.

6 Example 1 R n Is a Vector Space The set V = R n with the standard operations of addition and scalar multiplication is a vector space. The three most important special cases of R n are o R (the real numbers), o R 2 (the vectors in the plane), and o R 3 (the vectors in 3-space).

7 Example 2 A Vector Space of 2 2 Matrices (1/4) Show that the set V of all 2 2 matrices with real entries is a vector space if vector addition is defined to be matrix addition and vector scalar multiplication is defined to be matrix scalar multiplication.

8 Example 2 A Vector Space of 2 2 Matrices (2/4) Solution. In this example we will find it convenient to verify the axioms in the following order: 1, 6, 2, 3, 7, 8, 9, 4, 5, and 10. u u u Let u = and v = u v v v v To prove Axiom 1, we must show that u + v is an object in V; that is we must show that u + v is a 2 2 matrix. u11 u12 v11 v12 u + v = + = u21 u 22 v21 v 22 u + v u + v u + v u + v

9 Example 2 A Vector Space of 2 2 Matrices (3/4) Similarly, Axiom 6 hold because for any real number k we have u11 u12 ku11 ku12 ku = k = u u ku ku so that ku is a 2 2 matrix and consequently is an object in V. Axioms 2: u + v = v + u u u v v v v u u u v = u21 u + 22 v21 v = + = + 22 v21 v 22 u21 u v u 22 Axiom 3: u + (v + w) = (u + v) + w (3,7, 8, 9, 4, 5, and 10 แสดงเอง)

10 Example 3 A Vector Space of m n Matrices Example 2 is a special case of a more general class of vector spaces. The arguments in that example can be adapted to show that the set V of all m n matrices with real entries, together with the operations matrix addition and scalar multiplication, is a vector space. The m n zero matrix is the zero vector 0, and if u is the m n matrix U, then matrix U is the negative u of the vector u. We shall denote this vector space by the symbol M mn.

11 Example 4 A Vector Space of Real-Valued Functions Let V be the set of real-valued functions defined on the entired real line (-, ). If f = f(x) and g = g(x) are two such functions and k is any real number, defined the sum function f + g and the scalar multiple kf, respectively, by ( f + g)( x) = f( x) + g( x) and ( kf)( x) = kf( x)

12 Remark In the preceding example we focused attention on the interval (-, ). Had we restricted our attention to some closed interval [a, b] or some open interval (a, b), the functions defined on those intervals with the operations stated in the example would also have produced vector spaces. Those vector spaces are denoted by F[a, b] and F(a, b).

13 Example 5 A Set That Is Not a Vector Space Let V = R 2 and define addition and scalar multiplication operations as follows: If u = (u 1, u 2 ) and v = (v 1, v 2 ), then define u+ v= ( u + v, u + v ) and if k is any real number, then define ku = ( ku,0) 1

14 Example 5 A Set That Is Not a Vector Space (Solution) There are values of u for which Axiom 10 fails to hold. For example, if u = (u 1, u 2 ) is such that u 2 0,then 1u= 1( u, u ) = (1 u,0) = ( u,0) u Thus, V is not a vector space with the stated operations.

15 Example 6 Every Plane Through the Origin Is a Vector Space Let V be any plane through the origin in R 3. (สมการระนาบ ax + by + cz = 0 ) From Example 1, we know that R 3 itself is a vector space under these operation. Thus, Axioms 2, 3, 7, 8, 9, and 10 hold for all points in R 3 and consequently for all points in the plane V. We therefore need only show that Axioms 1, 4, 5, and 6 are satisfied.

16 Example 7 The Zero Vector Space Let V consist of a single object, which we denote by 0, and define = 0 and k0 = 0 for all scalars k. We called this the zero vector space.

17 Theorem Let V be a vector space, u a vector in V, and k a scalar; then: a) 0u = 0 b) K0 = 0 c) (-1)u = -u d) If ku = 0, then k = 0 or u = 0.

18 5.2 Subspaces

19 Definition A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and scalar multiplication defined on V.

20 Theorem If W is a set of one or more vectors from a vector space V, then W is a subspace of V if and only if the following conditions hold. a) If u and v are vectors in W, then u + v is in W. b) If k is any scalar and u is any vector in W, then ku is in W.

21 Remark Theorem states that W is a subspace of V if and only if W is a closed under addition (condition (a)) and closed under scalar multiplication (condition (b)).

22 Example 1 Testing for a Subspace Let W be any plane through the origin and let u and v be any vectors in W. Then u + v must line in W because it is the diagonal of the parallelogram determined by u and v, and ku must line in W for any scalar k because ku lies on a line through u. Thus, W is closed under addition and scalar multiplication, so it is a sunspace of R 3.

23 Example 2 Lines Through the Origin Are Subspaces Show that a line through the origin of R 3 is a subspace of R 3. Solution. Let W be a line through the origin of R 3.

24 Example 3 A subspace of R 2 That Is Not a Subspace Let W be the set of all points (x, y) in R 2 such that x 0 and y 0. These are the points in the first quadrant. The set W is not a subspace of R 2 since it is not closed under scalar multiplication.

25 Remark Every nonzero vector space V has at least two subspace: V itself is a subspace, and the set {0} consisting of just the zero vector in V is a subspace called the zero subspace. Combining this with Example 1 and 2, we obtain the following list of subspaces of R 2 and R 3 :

26 Subspace of R 2 {0} Lines through the origin R 2 Subspace of R 3 {0} Lines through the origin Planes through origin R 3 Remark These are the only subspaces of R 2 and R 3.

27 Example 4 Subspaces of M nn From Theorem the sum of two symmetric matrices is symmetric, and a scalar multiple of a symmetric matrix is symmetric. Thus, the set of n n symmetric matrices is a subspace of the vector space M nn of n n matrices. The set of n n upper triangular matrices, the set of n n lower triangular matrices, and the set of n n diagonal matrices all form subspaces of M nn, since each of these sets is closed under addition and scalar multiplication.

28 Example 5 A Subspace of Polynomials of Degree n Let n be a nonnegative integer, and let W consist of all function expressible in the form p(x) = a 0 + a 1 x a n x n where a 0,,a n are real number. Let p and q be the polynomials Then and p(x) = a 0 + a 1 x a n x n and q(x) = b 0 + b 1 x b n x n (p + q)(x) = p(x) + q(x) = (a 0 + b 0 ) + (a 1 + b 1 )x (a n + b n )x n (kp)(x) = kp(x) = (ka 0 ) + (ka 1 )x (ka n )x n These functions have the form given in (1), so p + q and kp lie in W. We shall denote the vector space W in this example by the symbol P n.

29 Example 6 Subspaces of Functions Continuous on (-, ) Recall from calculus that if f and g are continuous functions on the interval (-, ) and k is a constant, then f + g and kf are also continuous. Thus, the continuous functions on the interval (-, ) form a subspace of F(-, ), since they are closed under addition and scalar multiplication. We denote this subspace by C(-, ). Similarly, if f and g have continuous first derivatives on (-, ) form a subspace of F(-, ). We denote this subspace by C 1 (-, ), where the subscript 1 is used to emphasize the first derivate. However, it is a theorem of calculus that every differentiable function is continuous, so C 1 (-, ) is actually a subspace of C(-, ).

30 Example 6 Subspaces of Functions Continuous on (-, ) To take this a step further, for each positive integer m, the functions with continuous m th derivatives on (-, ) form a subspace of C 1 (-, ) as do the functions that have continuous derivates of all orders. We denote the subspace of functions with continuous m th derivatives on (-, ) by C m (-, ), and we denote the subspace of functions that have continuous derivatives of all order on (-, ) by C (-, ). Finally, it is a theorem of calculus that polynomials have continuous derivatives of all order, so P n is a subspace of C (-, ).

31 Example 6 Subspaces of Functions Continuous on (-, )

32 Solution Space of Homogeneous Systems If Ax = b is a system of the linear equations, then each vector x that satisfies this equation is called a solution vector of the system. The following theorem shows that the solution vectors of a homogeneous linear system form a vector space, which we shall call the solution space of the system.

33 Theorem If Ax = 0 is a homogeneous linear system of m equations in n unknowns, then the set of solution vectors is a subspace of R n.

34 Example 7 Solution Spaces That Are Subspaces of R 3 (a) x y z = (b) x y z = (c) x y z = (d) x y z = Each of these systems has three unknowns, so the solutions form subspaces of R 3. Geometrically, this means that each solution space must be a line through the origin, a plane through the origin, the origin only, or all of R 3. We shall now verify that this is so.

35 Example 7 Solution Spaces That Are Subspaces of R 3 Solution. (a) x = 2s 3t, y = s, z = t x = 2y 3z or x 2y + 3z = 0 This is the equation of the plane through the origin with n = (1, -2, 3) as a normal vector. (b) x = 5t, y = t, z = t which are parametric equations for the line through the origin parallel to the vector v = ( 5, 1, 1). (c) The solution is x = 0, y = 0, z = 0, so the solution space is the origin only, that is {0}. (d) The solution are x = r, y = s, z = t, where r, s, and t have arbitrary values, so the solution space is all of R 3.

36 Definition A vector w is a linear combination of the vectors v 1, v 2,, v r if it can be expressed in the form w = k 1 v 1 + k 2 v k r v r where k 1, k 2,, k r are scalars.

37 Example 8 Vectors in R 3 Are Linear Combinations of i, j, and k Every vector v = (a, b, c) in R 3 is expressible as a linear combination of the standard basis vectors since i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai + bj + ck

38 Example 9 Checking a Linear Combination Consider the vectors u = (1, 2, 1) and v = (6, 4, 2) in R 3. Show that w = (9, 2, 7) is a linear combination of u and v and that w = (4, 1, 8) is not a linear combination of u and v.

39 Example 9 Checking a Linear Combination Solution. In order for w to be a linear combination of u and v, there must be scalars k 1 and k 2 such that w = k 1 u + k 2 v; (9, 2, 7) = (k 1 + 6k 2, 2k 1 + 4k 2, k 1 + 2k 2 ) Equating corresponding components gives k 1 + 6k 2 = 9 2k 1 + 4k 2 = 2 k 1 + 2k 2 = 7 Solving this system yields k 1 = 3, k 2 = 2, so w = 3u + 2v

40 Example 9 Checking a Linear Combination Similarly, for w to be a linear combination of u and v, there must be scalars k 1 and k 2 such that w = k 1 u + k 2 v; (4, -1, 8) = k 1 (1, 2, 1) + k 2 (6, 4, 2) Or (4, 1, 8) = (k 1 + 6k 2, 2k 1 + 4k 2, k 1 + 2k 2 ) Equating corresponding components gives k 1 + 6k 2 = 4 2 k 1 + 4k 2 = 1 k 1 + 2k 2 = 8 This system of equation is inconsistent, so no such scalars k 1 and k 2 exist. Consequently, w is not a linear combination of u and v.

41 Theorem If v 1, v 2,, v r are vectors in a vector space V, then: a) The set W of all linear combinations of v 1, v 2,, v r is a subspace of V. b) W is the smallest subspace of V that contain v 1, v 2,, v r in the sense that every other subspace of V that contain v 1, v 2,, v r must contain W.

42 Definition If S = {v 1, v 2,, v r } is a set of vectors in a vector space V, then the subspace W of V containing of all linear combination of these vectors in S is called the space spanned by v 1, v 2,, v r and we say that the vectors v 1, v 2,, v r span W. To indicate that W is the space spanned by the vectors in the set S = {v 1, v 2,, v r }, we write W = span(s) or W = span{v 1, v 2,, v r }

43 Example 10 Spaces Spanned by One or Two Vectors If v 1 and v 2 are nonlinear vectors in R 3 with their initial points at the origin, then span{v 1, v 2 }, which consists of all linear combinations k1 v 1 + k2 v 2 is the plane determined by v 1 and v 2. Similarly, if v is a nonzero vector in R 2 and R 3, then span{v}, which is the set of all scalar multiples kv, is the linear determined by v.

44 Example 10 Spaces Spanned by One or Two Vectors

45 Example 11 Spanning Set for P n The polynomials 1, x, x 2,, x n span the vector space P n defined in Example 5 since each polynomial p in P n can be written as p = a 0 + a 0 x + + a n x n which is a linear combination of 1, x, x 2,, x n. We can denote this by writing P n = span{1, x, x 2,, x n }

46 Example 12 Three Vectors That Do Not Span R 3 Determine whether v 1 = (1, 1, 2), v 2 = (1, 0, 1), and v 3 = (2, 1, 3) span the vector space R 3.

47 Example 12 Three Vectors That Do Not Span R 3 Solution. We must determine whether an arbitrary vector b = (b 1, b 2, b 3 ) in R3 can be expressed as a linear combination b = k 1 v 1 + k 2 v 2 + k 3 v 3 Expressing this equation in terms of components gives (b 1, b 2, b 3 ) = k 1 (1, 1, 3) + k 2 (1, 0, 1) + k 3 (2, 1,3) or (b 1, b 2, b 3 ) = (k 1 + k 2 + 2k 3, k 1 + k 3, 2k 1 + k k 3 ) or k 1 + k 2 + 2k 3 = b 1 + k 3 = b k 1 2k 1 + k k 3 = b A = by parts (e) and (g) of Theorem 4.3.4, this system is consistent for all b 1, b 2, and b 3 if and only if the coefficient matrix has a nonzero determinant. However, det(a) = 0, so that v 1, v 2, and v 3, do not span R3.

48 Theorem If S = {v 1, v 2,, v r } and S = {w 1, w 2,, w r } are two sets of vector in a vector space V, then span{v 1, v 2,, v r } = span{w 1, w 2,, w r } if and only if each vector in S is a linear combination of these in S and each vector in S is a linear combination of these in S.

Vector Spaces ปร ภ ม เวกเตอร

Vector Spaces ปร ภ ม เวกเตอร Vector Spaces ปร ภ ม เวกเตอร 1 5.1 Real Vector Spaces ปร ภ ม เวกเตอร ของจ านวนจร ง Vector Space Axioms (1/2) Let V be an arbitrary nonempty set of objects on which two operations are defined, addition

More information

Lecture 16: 9.2 Geometry of Linear Operators

Lecture 16: 9.2 Geometry of Linear Operators Lecture 16: 9.2 Geometry of Linear Operators Wei-Ta Chu 2008/11/19 Theorem 9.2.1 If T: R 2 R 2 is multiplication by an invertible matrix A, then the geometric effect of T is the same as an appropriate

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementary Linear Algebra Anton & Rorres, 10 th Edition Lecture Set 05 Chapter 4: General Vector Spaces 1006003 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2554 1006003 คณตศาสตรวศวกรรม

More information

Lecture 17: Section 4.2

Lecture 17: Section 4.2 Lecture 17: Section 4.2 Shuanglin Shao November 4, 2013 Subspaces We will discuss subspaces of vector spaces. Subspaces Definition. A subset W is a vector space V is called a subspace of V if W is itself

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

Mathematics 206 Solutions for HWK 13b Section 5.2

Mathematics 206 Solutions for HWK 13b Section 5.2 Mathematics 206 Solutions for HWK 13b Section 5.2 Section Problem 7ac. Which of the following are linear combinations of u = (0, 2,2) and v = (1, 3, 1)? (a) (2, 2,2) (c) (0,4, 5) Solution. Solution by

More information

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces Chapter 2 General Vector Spaces Outline : Real vector spaces Subspaces Linear independence Basis and dimension Row Space, Column Space, and Nullspace 2 Real Vector Spaces 2 Example () Let u and v be vectors

More information

17. C M 2 (C), the set of all 2 2 matrices with complex entries. 19. Is C 3 a real vector space? Explain.

17. C M 2 (C), the set of all 2 2 matrices with complex entries. 19. Is C 3 a real vector space? Explain. 250 CHAPTER 4 Vector Spaces 14. On R 2, define the operation of addition by (x 1,y 1 ) + (x 2,y 2 ) = (x 1 x 2,y 1 y 2 ). Do axioms A5 and A6 in the definition of a vector space hold? Justify your answer.

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 1.4 Linear Combinations Math 4377/6308 Advanced Linear Algebra 1.4 Linear Combinations & Systems of Linear Equations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Chapter 2: Linear Independence and Bases

Chapter 2: Linear Independence and Bases MATH20300: Linear Algebra 2 (2016 Chapter 2: Linear Independence and Bases 1 Linear Combinations and Spans Example 11 Consider the vector v (1, 1 R 2 What is the smallest subspace of (the real vector space

More information

XV - Vector Spaces and Subspaces

XV - Vector Spaces and Subspaces MATHEMATICS -NYC- Vectors and Matrices Martin Huard Fall 7 XV - Vector Spaces and Subspaces Describe the zero vector (the additive identity) for the following vector spaces 4 a) c) d) e) C, b) x, y x,

More information

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science Section 4.2 Subspaces College of Science MATHS 211: Linear Algebra (University of Bahrain) Subspaces 1 / 42 Goal: 1 Define subspaces. 2 Subspace test. 3 Linear Combination of elements. 4 Subspace generated

More information

Inner Product Spaces

Inner Product Spaces Inner Product Spaces Introduction Recall in the lecture on vector spaces that geometric vectors (i.e. vectors in two and three-dimensional Cartesian space have the properties of addition, subtraction,

More information

Vector Spaces. (1) Every vector space V has a zero vector 0 V

Vector Spaces. (1) Every vector space V has a zero vector 0 V Vector Spaces 1. Vector Spaces A (real) vector space V is a set which has two operations: 1. An association of x, y V to an element x+y V. This operation is called vector addition. 2. The association of

More information

Chapter 3. More about Vector Spaces Linear Independence, Basis and Dimension. Contents. 1 Linear Combinations, Span

Chapter 3. More about Vector Spaces Linear Independence, Basis and Dimension. Contents. 1 Linear Combinations, Span Chapter 3 More about Vector Spaces Linear Independence, Basis and Dimension Vincent Astier, School of Mathematical Sciences, University College Dublin 3. Contents Linear Combinations, Span Linear Independence,

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Math 24 Calculus III Summer 25, Session II. Determine whether the given set is a vector space. If not, give at least one axiom that is not satisfied. Unless otherwise stated,

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Sept. 26, 2013 Math 3312 sec 003 Fall 2013

Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Section 4.1: Vector Spaces and Subspaces Definition A vector space is a nonempty set V of objects called vectors together with two operations called vector addition

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Vector Spaces - Definition

Vector Spaces - Definition Vector Spaces - Definition Definition Let V be a set of vectors equipped with two operations: vector addition and scalar multiplication. Then V is called a vector space if for all vectors u,v V, the following

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

Linear Algebra (Math-324) Lecture Notes

Linear Algebra (Math-324) Lecture Notes Linear Algebra (Math-324) Lecture Notes Dr. Ali Koam and Dr. Azeem Haider September 24, 2017 c 2017,, Jazan All Rights Reserved 1 Contents 1 Real Vector Spaces 6 2 Subspaces 11 3 Linear Combination and

More information

GENERAL VECTOR SPACES AND SUBSPACES [4.1]

GENERAL VECTOR SPACES AND SUBSPACES [4.1] GENERAL VECTOR SPACES AND SUBSPACES [4.1] General vector spaces So far we have seen special spaces of vectors of n dimensions denoted by R n. It is possible to define more general vector spaces A vector

More information

3 - Vector Spaces Definition vector space linear space u, v,

3 - Vector Spaces Definition vector space linear space u, v, 3 - Vector Spaces Vectors in R and R 3 are essentially matrices. They can be vieed either as column vectors (matrices of size and 3, respectively) or ro vectors ( and 3 matrices). The addition and scalar

More information

MATH 225 Summer 2005 Linear Algebra II Solutions to Assignment 1 Due: Wednesday July 13, 2005

MATH 225 Summer 2005 Linear Algebra II Solutions to Assignment 1 Due: Wednesday July 13, 2005 MATH 225 Summer 25 Linear Algebra II Solutions to Assignment 1 Due: Wednesday July 13, 25 Department of Mathematical and Statistical Sciences University of Alberta Question 1. [p 224. #2] The set of all

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date May 9, 29 2 Contents 1 Motivation for the course 5 2 Euclidean n dimensional Space 7 2.1 Definition of n Dimensional Euclidean Space...........

More information

MATH2210 Notebook 3 Spring 2018

MATH2210 Notebook 3 Spring 2018 MATH2210 Notebook 3 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 3 MATH2210 Notebook 3 3 3.1 Vector Spaces and Subspaces.................................

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V.

DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V. 6.2 SUBSPACES DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V. HMHsueh 1 EX 1 (Ex. 1) Every vector space

More information

Online Exercises for Linear Algebra XM511

Online Exercises for Linear Algebra XM511 This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date April 29, 23 2 Contents Motivation for the course 5 2 Euclidean n dimensional Space 7 2. Definition of n Dimensional Euclidean Space...........

More information

System of Linear Equations

System of Linear Equations Math 20F Linear Algebra Lecture 2 1 System of Linear Equations Slide 1 Definition 1 Fix a set of numbers a ij, b i, where i = 1,, m and j = 1,, n A system of m linear equations in n variables x j, is given

More information

which are not all zero. The proof in the case where some vector other than combination of the other vectors in S is similar.

which are not all zero. The proof in the case where some vector other than combination of the other vectors in S is similar. It follows that S is linearly dependent since the equation is satisfied by which are not all zero. The proof in the case where some vector other than combination of the other vectors in S is similar. is

More information

Algorithms to Compute Bases and the Rank of a Matrix

Algorithms to Compute Bases and the Rank of a Matrix Algorithms to Compute Bases and the Rank of a Matrix Subspaces associated to a matrix Suppose that A is an m n matrix The row space of A is the subspace of R n spanned by the rows of A The column space

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

There are two things that are particularly nice about the first basis

There are two things that are particularly nice about the first basis Orthogonality and the Gram-Schmidt Process In Chapter 4, we spent a great deal of time studying the problem of finding a basis for a vector space We know that a basis for a vector space can potentially

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS Math 50B Midterm II Information Spring 019 SOLUTIONS TO PRACTICE PROBLEMS Problem 1. Determine whether each set S below forms a subspace of the given vector space V. Show carefully that your answer is

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Fall 2016 MATH*1160 Final Exam

Fall 2016 MATH*1160 Final Exam Fall 2016 MATH*1160 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie Dec 16, 2016 INSTRUCTIONS: 1. The exam is 2 hours long. Do NOT start until instructed. You may use blank

More information

Linear Algebra Homework and Study Guide

Linear Algebra Homework and Study Guide Linear Algebra Homework and Study Guide Phil R. Smith, Ph.D. February 28, 20 Homework Problem Sets Organized by Learning Outcomes Test I: Systems of Linear Equations; Matrices Lesson. Give examples of

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

4.6 Bases and Dimension

4.6 Bases and Dimension 46 Bases and Dimension 281 40 (a) Show that {1,x,x 2,x 3 } is linearly independent on every interval (b) If f k (x) = x k for k = 0, 1,,n, show that {f 0,f 1,,f n } is linearly independent on every interval

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 994, 28. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

LS.1 Review of Linear Algebra

LS.1 Review of Linear Algebra LS. LINEAR SYSTEMS LS.1 Review of Linear Algebra In these notes, we will investigate a way of handling a linear system of ODE s directly, instead of using elimination to reduce it to a single higher-order

More information

Math113: Linear Algebra. Beifang Chen

Math113: Linear Algebra. Beifang Chen Math3: Linear Algebra Beifang Chen Spring 26 Contents Systems of Linear Equations 3 Systems of Linear Equations 3 Linear Systems 3 2 Geometric Interpretation 3 3 Matrices of Linear Systems 4 4 Elementary

More information

Tune-Up Lecture Notes Linear Algebra I

Tune-Up Lecture Notes Linear Algebra I Tune-Up Lecture Notes Linear Algebra I One usually first encounters a vector depicted as a directed line segment in Euclidean space, or what amounts to the same thing, as an ordered n-tuple of numbers

More information

Vector Spaces and SubSpaces

Vector Spaces and SubSpaces Vector Spaces and SubSpaces Linear Algebra MATH 2076 Linear Algebra Vector Spaces & SubSpaces Chapter 4, Section 1b 1 / 10 What is a Vector Space? A vector space is a bunch of objects that we call vectors

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 4 Linear Spaces Chia-Hui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan October 28, 2002 4.1 Introduction

More information

Matrices and Matrix Algebra.

Matrices and Matrix Algebra. Matrices and Matrix Algebra 3.1. Operations on Matrices Matrix Notation and Terminology Matrix: a rectangular array of numbers, called entries. A matrix with m rows and n columns m n A n n matrix : a square

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124 Matrices Math 220 Copyright 2016 Pinaki Das This document is freely redistributable under the terms of the GNU Free Documentation License For more information, visit http://wwwgnuorg/copyleft/fdlhtml Contents

More information

VECTOR SPACES & SUBSPACES

VECTOR SPACES & SUBSPACES VECTOR SPACES & SUBSPACES Definition: The real Vector Space " V " is the set of all entities called "vectors" with real entries that satisfy two closure properties and obey a set of eight rules. If "x"

More information

7. Dimension and Structure.

7. Dimension and Structure. 7. Dimension and Structure 7.1. Basis and Dimension Bases for Subspaces Example 2 The standard unit vectors e 1, e 2,, e n are linearly independent, for if we write (2) in component form, then we obtain

More information

DEFINITION (Subspace): Let V be a vector space. A subspace of V is a nonempty subset S of V satisfying the following two properties:

DEFINITION (Subspace): Let V be a vector space. A subspace of V is a nonempty subset S of V satisfying the following two properties: Vector Spaces and Subspaces DEFINITION (Vector Space): A vector space is a nonempty set V of vectors such that the vector addition and multiplication by real scalars are defined. First of all, the addition

More information

4 Vector Spaces. 4.1 Basic Definition and Examples. Lecture 10

4 Vector Spaces. 4.1 Basic Definition and Examples. Lecture 10 Lecture 10 4 Vector Spaces 4.1 Basic Definition and Examples Throughout mathematics we come across many types objects which can be added and multiplied by scalars to arrive at similar types of objects.

More information

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises This document gives the solutions to all of the online exercises for OHSx XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Answers are in square brackets [. Lecture 02 ( 1.1)

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF

APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF ELEMENTARY LINEAR ALGEBRA WORKBOOK/FOR USE WITH RON LARSON S TEXTBOOK ELEMENTARY LINEAR ALGEBRA CREATED BY SHANNON MARTIN MYERS APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF When you are done

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

Abstract Vector Spaces

Abstract Vector Spaces CHAPTER 1 Abstract Vector Spaces 1.1 Vector Spaces Let K be a field, i.e. a number system where you can add, subtract, multiply and divide. In this course we will take K to be R, C or Q. Definition 1.1.

More information

50 Algebraic Extensions

50 Algebraic Extensions 50 Algebraic Extensions Let E/K be a field extension and let a E be algebraic over K. Then there is a nonzero polynomial f in K[x] such that f(a) = 0. Hence the subset A = {f K[x]: f(a) = 0} of K[x] does

More information

Simplifying Rational Expressions and Functions

Simplifying Rational Expressions and Functions Department of Mathematics Grossmont College October 15, 2012 Recall: The Number Types Definition The set of whole numbers, ={0, 1, 2, 3, 4,...} is the set of natural numbers unioned with zero, written

More information

Unit 2, Section 3: Linear Combinations, Spanning, and Linear Independence Linear Combinations, Spanning, and Linear Independence

Unit 2, Section 3: Linear Combinations, Spanning, and Linear Independence Linear Combinations, Spanning, and Linear Independence Linear Combinations Spanning and Linear Independence We have seen that there are two operations defined on a given vector space V :. vector addition of two vectors and. scalar multiplication of a vector

More information

SPRING OF 2008 D. DETERMINANTS

SPRING OF 2008 D. DETERMINANTS 18024 SPRING OF 2008 D DETERMINANTS In many applications of linear algebra to calculus and geometry, the concept of a determinant plays an important role This chapter studies the basic properties of determinants

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

The Theory of Linear Homogeneous (Constant Coefficient) Recurrences

The Theory of Linear Homogeneous (Constant Coefficient) Recurrences The Theory of Linear Homogeneous (Constant Coefficient) Recurrences by Evan Houston The paper below was prepared by Evan Houston for his Combinatorics classes several years ago. The mathematics is due

More information

MATH2210 Notebook 2 Spring 2018

MATH2210 Notebook 2 Spring 2018 MATH2210 Notebook 2 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 2 MATH2210 Notebook 2 3 2.1 Matrices and Their Operations................................

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

INTRODUCTION TO LIE ALGEBRAS. LECTURE 2.

INTRODUCTION TO LIE ALGEBRAS. LECTURE 2. INTRODUCTION TO LIE ALGEBRAS. LECTURE 2. 2. More examples. Ideals. Direct products. 2.1. More examples. 2.1.1. Let k = R, L = R 3. Define [x, y] = x y the cross-product. Recall that the latter is defined

More information

Vector Spaces. Addition : R n R n R n Scalar multiplication : R R n R n.

Vector Spaces. Addition : R n R n R n Scalar multiplication : R R n R n. Vector Spaces Definition: The usual addition and scalar multiplication of n-tuples x = (x 1,..., x n ) R n (also called vectors) are the addition and scalar multiplication operations defined component-wise:

More information

2.3. VECTOR SPACES 25

2.3. VECTOR SPACES 25 2.3. VECTOR SPACES 25 2.3 Vector Spaces MATH 294 FALL 982 PRELIM # 3a 2.3. Let C[, ] denote the space of continuous functions defined on the interval [,] (i.e. f(x) is a member of C[, ] if f(x) is continuous

More information

(a). W contains the zero vector in R n. (b). W is closed under addition. (c). W is closed under scalar multiplication.

(a). W contains the zero vector in R n. (b). W is closed under addition. (c). W is closed under scalar multiplication. . Subspaces of R n Bases and Linear Independence Definition. Subspaces of R n A subset W of R n is called a subspace of R n if it has the following properties: (a). W contains the zero vector in R n. (b).

More information

Chapter 1: Systems of Linear Equations and Matrices

Chapter 1: Systems of Linear Equations and Matrices : Systems of Linear Equations and Matrices Multiple Choice Questions. Which of the following equations is linear? (A) x + 3x 3 + 4x 4 3 = 5 (B) 3x x + x 3 = 5 (C) 5x + 5 x x 3 = x + cos (x ) + 4x 3 = 7.

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

MATH 2360 REVIEW PROBLEMS

MATH 2360 REVIEW PROBLEMS MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

18.06 Problem Set 3 - Solutions Due Wednesday, 26 September 2007 at 4 pm in

18.06 Problem Set 3 - Solutions Due Wednesday, 26 September 2007 at 4 pm in 8.6 Problem Set 3 - s Due Wednesday, 26 September 27 at 4 pm in 2-6. Problem : (=2+2+2+2+2) A vector space is by definition a nonempty set V (whose elements are called vectors) together with rules of addition

More information

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition 6 Vector Spaces with Inned Product Basis and Dimension Section Objective(s): Vector Spaces and Subspaces Linear (In)dependence Basis and Dimension Inner Product 6 Vector Spaces and Subspaces Definition

More information

Chapter Two Elements of Linear Algebra

Chapter Two Elements of Linear Algebra Chapter Two Elements of Linear Algebra Previously, in chapter one, we have considered single first order differential equations involving a single unknown function. In the next chapter we will begin to

More information

Math 3013 Problem Set 6

Math 3013 Problem Set 6 Math 3013 Problem Set 6 Problems from 31 (pgs 189-190 of text): 11,16,18 Problems from 32 (pgs 140-141 of text): 4,8,12,23,25,26 1 (Problems 3111 and 31 16 in text) Determine whether the given set is closed

More information

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b . FINITE-DIMENSIONAL VECTOR SPACES.. Fields By now you ll have acquired a fair knowledge of matrices. These are a concrete embodiment of something rather more abstract. Sometimes it is easier to use matrices,

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Systems of Linear Equations and Matrices

Systems of Linear Equations and Matrices Chapter 1 Systems of Linear Equations and Matrices System of linear algebraic equations and their solution constitute one of the major topics studied in the course known as linear algebra. In the first

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information